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I. INTRODUCTION

Precise localization and reliable exchange of information among distributed sensors, soldiers and un-
manned aerial/ground vehicles (UAVs/UGVs) are important for tactical communications. To this end, Ultra-
Wideband (UWB) technology emerges as a promising candidate, providing high performance wireless links
with low complexity and low probability of detection (LPD). Rapid timing synchronization constitutes a
major challenge in realizing these promises. Synchronization faces accentuated difficulties in the UWB
regime because its waveforms are impulse-like and have low amplitude, and the propagation channel
is unknown at the receiver. These explain why synchronization has attracted so much interest in UWB
research [3], [1], [4], [6], [5]. But each of existing approaches requires a number of restrictive assumptions.

Without invoking any of the assumptions required by existing algorithms, we develop timing algo-
rithms that remain operational in general UWB settings with fast time hopping (TH), unknown multipath
propagation and even when multiple users are present. Our synchronizers rely on symbol-rate samples
and thus entail low complexity. Most existing synchronizers are based on the unique maximum of the
received pulse’s autocorrelation function, which requires a “clean template” of the received pulse to be
available. The latter is not feasible when the multipath channel is unknown. Our novel criterion relies
on the unique maximum that emerges by cross correlating “dirty templates” extracted from the received
waveform. These dirty templates render channel information unnecessary since it is embedded in the
received waveform.

II. TIMING WITH DIRTY TEMPLATES (TDT)

A. System Model

In UWB multiple access, every symbol duration Ts consists of Nf frames. During each frame of duration
Tf , a data modulated Tp(� Tf )-long pulse p(t) is transmitted. For conciseness, we will deal with pulse
amplitude modulation (PAM) where the kth symbol from the uth user su(k) is drawn equi-probably from
{±1}. User separation is accomplished with pseudo-random TH codes cu(n). The multipath channel for
user u has Lu + 1 taps whose delays satisfy τu,0 = 0 and τu,l < τu,l+1. The waveform arriving at the
receiver is then given by:

r(t) =
Nu−1∑
u=0

√
Eu

+∞∑
k=0

su(k)pu,R(t − kTs − τu) + η(t), (1)

where Nu is the total number of active users, τu is the propagation delay of the uth user’s direct path, η(t)

denotes zero-mean additive Gaussian noise (AGN), and pu,R(t) :=
∑Lu

l=0 αu,l

∑Nf−1
n=0 p(t−nTf −cu(n)Tc−

τu,l) denotes the overall received symbol-long waveform capturing the pulse shaper and the dispersive
channel effects. Timing synchronization amounts to finding the desired user’s timing offset τu ∈ [0, Ts)
for the desired user. Notice that the AGN η(t) is white Gaussian noise with PSD σ2/2, but bandpass
filtered by the receiver frontend with bandwidth B and center frequency f0. We assume that:
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(as) The nonzero support of the waveform pu,R(t) is upper bounded by the symbol duration Ts.
This assumption implies that inter-symbol interference (ISI) is absent, but allows inter-pulse and inter-
frame interference to be present. In low-duty-cycle UWB systems, (as) is satisfied by choosing Tf ≥
τL,0 + Tp and cu(Nf − 1) = 0; whereas in high-rate UWB radios, the condition Tf ≥ τL,0 + Tp can be
relaxed as long as guard frames are inserted between symbols to avoid ISI, much like zero-padding in
narrowband systems.

B. Dirty Templates

Our idea for estimating τu hinges upon pairs of successive symbol-long segments of r(t) taken at
candidate time-shifts τ ∈ [0, Ts). Integrate-and-dump operations are performed on products of such
segments to obtain symbol-rate samples: x(k; τ) =

∫ Ts

0
r(t + 2kTs + τ)r(t + (2k − 1)Ts + τ)dt. The

symbol-long segments r(t + 2kTs + τ) and r(t + (2k + 1)Ts + τ), for t ∈ [0, Ts) serve as “templates”
for each other in the correlation operation. We call these templates “dirty” because: i) they are noisy;
ii) they are distorted by the unknown channel; and iii) they are subject to the unknown offset τ0. The
latter constitutes a major difference between our TDT and the transmitted reference (TR) approach [2]
for channel estimation and symbol demodulation.

C. TDT Algorithms

Focusing on a point-to-point (PTP) link and treating multi-user interference as noise, we establish:

Proposition 1: Under (as), unbiased and mean-square sense (mss) consistent (non-)data-aided TDT can
be accomplished even when TH codes are present and the UWB multipath channel is unknown, using
“dirty” Ts-long segments of the received waveform as follows:

τ̂u,ptp = arg max
τ∈[0,Ts)

1

K

K∑
k=1

(∫ (2k+1)Ts

2kTs

r(t + τ)r(t + τ − Ts)dt

)2

. (2)

The synchronizer (2) is operational in a blind mode. But synchronization is possible with a minimum
of four symbols adhering to the following training pattern:

su(k) = (−1)�k/2�. (3)

More important, this training pattern also enables TDT in a multi-user (MU) environment:

Proposition 2: Under (as) and with the desired user transmitting the training pattern in (3) while other
users transmit zero-mean i.i.d. information symbols, mss consistent data-aided TDT can be accomplished
with as few as four training symbols, using either

τ̂u,mu1 = arg max
τ∈[0,Ts)

(
1

K

K∑
k=1

∫ (2k+1)Ts

2kTs

r(t + τ)r(t + τ − Ts)dt

)2

, (4)

or τ̂u,mu2 = arg max
τ∈[0,Ts)

(∫ Ts

0

r̄(t + τ)r̄(t + τ − Ts)dt

)2

, r̄(t) :=
1

K

K∑
k=1

(−1)kr(t + 2kTs), (5)

without requiring any knowledge on these users’ channels or timing information.
Two remarks are in order here with regards to the performance-complexity tradeoff: i) established for

TDT in a MU environment, synchronizers (4) and (5) can further improve performance when applied
to a PTP link; but unlike (2), they rely on the training pattern (3); and ii) though (5) yields the best
performance, it requires averaging analog waveforms.
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Fig. 1. (a) Probability of detection and lower bounds vs. SNR with K = 8, in a PTP link (nda: non-data-aided, da: data-aided);
and (b) Normalized MSE for (5) with various K values, in a MU environment.

D. Preliminary Simulations

In Fig. 1(a), the simulated probability of detection vs. SNR together with its analytical lower bound are
shown with K = 8. The lower bounds are rather pessimistic, but they correctly predict the relative
performance of these synchronizers. The union bounds are also shown. They are too loose to give
meaningful indications at low-to-medium SNR. In Fig. 1(b), the normalized MSE corresponding to (4)
in the presence of two interfering users is plotted. The two interfering users are asynchronous relative to
the desired user.

III. CONCLUSIONS

In this paper, we established a novel criterion for UWB timing synchronization, that we termed TDT.
For a point-to-point link, we developed low-complexity TDT algorithms with and without training symbols
and compared their performance by analysis and simulations. In addition, we designed a simple training
pattern which not only provides speedup for timing a single-user, but also enables timing a desired user in
a multi-user setup. Relying on simple integrate-and-dump operations as TR, our TDT algorithms provide
timing information that is needed by TR without incurring TR’s severe loss in spectral efficiency.
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